
Year 2000 Testing Procedure Guide

July 2, 1998 USDA-98-001

United States
Department of Agriculture

Office of the Chief Information Officer (OCIO)
Year 2000 Program Office

Year 2000 Testing Procedures Guide

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001

-ii-

Table of Contents

Section Subject Page

1.0 The Reason For Testing 1

2.0 Estimating Testing Time 2

3.0 Test Early and Test Often 3

4.0 Planning Your Testing Activities 3
4.1 Acceptance Tests 4
4.2 Responsible Parties 4
4.3 Test Preparation 6

5.0 Testing Year 2000 Changes 7
5.1 Additional Hardware for Testing 7
5.2 Involving Users in the Testing Process 8

5.2.1 Unit Testing 8
5.2.2 Integration Testing 8
5.2.3 System Testing 9
5.2.4 Regression Testing 9
5.2.5 End-to-End Testing 9

6.0 Creating Comprehensive Test Data 10
6.1 Data Quality 10

6.1.1 Quantity 11
6.1.2 Diversity 11

6.2 Specific Year 2000 Data 11
6.3 Generating Test Data 12

6.3.1 Day-of-week Calculations 12
6.3.2 Windowing Data 12

6.4 Examining Other Aspects of Testing 12
6.4.1 Leap Year 12
6.4.2 Third Party Software 12
6.4.3 Backup Procedures 13
6.4.4 Integrating Other Changes 13

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001

-iii-

7.0 Testing Tools 13
7.1 Debugger 13
7.2 Date Simulator 13
7.3 Data Aging Tools 14
7.4 Capture and Playback Tools 14
7.5 Coverage analysis tools 14
7.6 Performance Analysis Tools 14

Appendix A – References 16
Appendix B – Glossary 17
Appendix C – Various Test Procedures 20
Appendix D – Test Plan Review Checklist 38
Appendix E – Certificate of Year 2000 Compliance 51
Appendix F – OCIO Contracts for Advisory and Assistance Services

Memorandum
52

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001

1

1.0 The Reason For Testing

The Year 2000 represents a threat to computer operating systems and
applications, telecommunications, and embedded processors worldwide on
a scale that has never before been experienced. As computer applications
and embedded systems begin to encounter dates that occur after
December 31, 1999, they will begin to misinterpret time-dependent events.
Software experts estimate that about 5% of all U.S. businesses will go out
of business because of this problem. In government, all sectors of the
economy are at risk. Moreover, Year 2000 problems in one sector will
have a domino effect on others due to the many interdependencies and
linkages among them. In dealing with this complicated problem, many
activities are underway to fix computer systems that are not Year 2000
compliant. One such activity in the Year 2000 life cycle is testing.

Testing Year 2000 modifications is crucial. Following are some of the
many reasons why this testing is especially important:

• The deadline cannot be delayed. If a system isn’t ready on
1/1/2000, no amount of negotiating or explaining will buy more
time. A high percentage of software projects aren’t completed on
time – this can’t be one of them.

• There is only one chance to get it right. On many projects, if the
new version doesn’t work, you can revert to the original system.
Then you can correct the new version and reinstall it later. You
can’t do this when dealing with Year 2000 projects.

• More applications and lines of code affected. The Year 2000
project will likely affect more applications and more lines of code
than any previous projects. The amount of testing needs to be
correspondingly high.

• Old code modified. In many cases, code will be modifyed that
hasn’t been touched in years or decades. The original developers
are probably long gone, and no one is familiar with the code. This
alone dictate that testing is especially thorough.

• Systems in every area of life affected. The Year 2000 problem
affects systems as well as the computers of every organization you
deal with. It is important to test all data coming into the system as
well as data getting sent out.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
2

Since the Year 2000 computing problem is so pervasive, potentially
affecting Agencies’ systems software, applications software, databases,
hardware, firmware, telecommunications, external interfaces, and
vulnerable systems and processes, the requisite testing is extensive and
expensive. Experience is showing that Year 2000 testing is consuming
between 50 and 70 percent of a project’s time and resources. Therefore,
complete and thorough Year 2000 testing is essential to provide
reasonable assurance that new or modified systems process dates correctly
and will not jeopardize an Agency’s ability to perform core business
operations after the millennium. Until thorough testing has been
performed, there is no certainty that changes made are complete or correct.
No one wants any nasty surprises on the morning of Monday, January 3,
2000.

A problem reporting system should be developed to track the status of
Year 2000 problems identified during testing.

2.0 Estimating Testing Time

The amount of time devoted to testing will be a significant portion of your
Year 2000 effort. Year 2000 consultants and vendors estimate that testing
will represent from 50 - 70 percent of the total time spent on these
projects. If your project plan doesn’t allocate roughly this amount of time
for testing, you should reexamine it.

The Year 2000 plan for the state of California for instance, estimates that
testing will be 40 percent of the cost of the project. Table 1 is an
illustration of cost and time estimates by project phase for the state of
California.

Table 1. California’s Year 2000 Project Estimates1

Project Phase
Percent of

Project Cost
Time Frame
(in months)

Awareness 1 1
Inventory 1 1
Assessment 5 2
Solution design and handling 15 3-4
Development and modification 20 6-8
Testing 40 6-8
Implementation 10 4-5
Monitoring 8 6-10

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
3

3.0 Test Early and Test Often

“Vote early and vote often” was the advice on a campaign banner in the
1850s. This advice should be taken to heart, although in a slightly
different context, during any Year 2000 project. Following are two of the
many positives to testing early:

• Testing will almost certainly take longer than expected. Starting
early gives a little more assurance that the project will finish in
time.

• Testing early exposes problems earlier. Use this extra time to
correct problems. If early testing exposes shortcomings in a
project plan, procedures, or training, the earlier they are discovered
the more time available to correct them.

Testing also has many advantages. This project will affect a number of
software components, such as operating systems, compilers, assemblers,
link-editors, applications, and JCL scripts. Not all will be modified at the
same time. Any one of these pieces has the potential to affect earlier
changes.

For example, suppose that modifications have been made to a COBOL
program and it passes the acceptance test. What happens when a new
Year 2000 compliant version of the COBOL compiler is installed on the
mainframe and it is used to recompile all of the programs? How can we
be certain that it won’t introduce errors into a program that was working
previously? The only way to be certain this doesn’t occur is to retest each
program. This form of testing is called regression testing.

4.0 Planning Your Testing Activities

As part of the Agency’s establishment of an enterprise Year 2000 program
strategy, a Test and Evaluation Master Plan (TEMP) should be developed,
issued, and continuously updated to reflect changes in the test Agency’s
structure, actual test progress and experience, actual resource availability,
and changing priorities.

Earlier steps in any Year 2000 project will have broken the effort down to
manageable-sized chunks. These chunks are sometimes called upgrade
units or partitions. Each Agency needs to create a formal TEMP for each
piece. This section lists the components that should make up your TEMP.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
4

4.1 Acceptance Tests

The objective of testing is to make certain that software performs as
expected. The acceptance test plan needs to lay out, in great detail, the
steps of each test. These steps need to be clear enough that anyone can
perform them correctly every time.

It has been said that if you are a trial lawyer: Never ask a witness a
question if you don’t know how it will be answered. The wisdom of this
advice also applies to software testing. Successful testing means knowing
in advance what the results of a test will be. A test plan must describe the
tests that will be run as well as the expected outcome. Otherwise, how
will we know if the test has been passed?

4.2 Responsible Parties

When establishing your program management structure, a Year 2000 test
manager (program level) should be designated and given the authority and
responsibility for ensuring that Year 2000 testing is planned, conducted,
and reported in a structured and disciplined fashion, and is independently
reviewed by an independent verification and validation agent. A number
of members of the Year 2000 team will probably be involved in the testing
phase.

Generally testing falls into three categories, minimal testing, which
covers only the basic functionality and Year 2000 date impacts, nominal
testing for the applications and embedded system processes that would
ensure full functionality and Year 2000 compliance for primary date
calculations and comprehensive testing which considers things like upper
and lower boundary checking, erroneous data checking all possible Year
2000 impacts and all application functionality.

Minimal testing must be performed on all mission critical systems to
ensure Year 2000 compliancy. However, all test plans should consider
whenever practical comprehensive testing for all possible Year 2000
impacts and all application functionality. A phased approach may be
appropriate where on the first pass only minimal testing takes place.
When all applications have completed the minimal testing then on the
second pass the comprehensive tests are conducted. This approach may be
necessary when time becomes an issue and all systems have not been
tested.

A testing manager should be appointed and at a minimum (1) define and
assign roles, responsibilities and expectations for Year 2000 testing, (2)
define criteria for certifying a system as Year 2000 compliant, (3) develop

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
5

and maintain a test and evaluation master plan, (4) establish independent
quality assurance/verification and validation of test activities, (5) obtain
necessary test budgets, (6) establish test environments/facilities, augment
them as needed, and schedule their use according to established priorities,
(7) follow the test guidance provided and where necessary provide further
detailed guidance for the various types of testing (software unit/module,
integration, system acceptance, and end-to-end), and ensure that this
guidance is followed, (8) establish support processes and
resource/information sources, (9) establish a formal test activity and
progress reporting requirements, (10) and establish a library of test tools.
The manager will assign the roles and responsibility of each team member
on each test. Some roles follow:

• Designing the test. This is a very time consuming and often
tedious job that requires a good knowledge of the application, the
expected results and the conditions under which the test must pass.

• Preparing the test data. Test data must be developed to ensure that
all conditions are tested. Real data should never be used in testing
because all operating conditions may not be revealed with
relatively clean data. Data is developed that is error plagued to see
how the program reacts. Are error messages invoked, how does the
program react, is the result what was expected?

• Executing the test. The tests must be run over and over again to
test all conditions. Of special concern is the conditions under
which the tests are run. NEVER run tests in the production
environment unless strict and absolute controls are in place to
ensure the day-to-day production system is not affected and the test
data doesn’t contaminate real production data.

• Verifying that the test was successful. Verification is essential to
determine that all tests run successfully and that errors were
handled as required. Caution must be exercised to document the
conditions and ALL errors handled. Whenever possible automated
test tools, that allow the user to modify the test cases and
parameters of the tests, should be used. They not only save time
but they are easily repeated when tests have to be re-run for
regression testing.

• Signing off that the test was successful. This step requires the
person performing the test to sign off and certify the completeness
of the tests. It is recommended that all testing be certified by a
reviewer and not the actual tester. This ensures that all tests were
run and that the results were documented.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
6

• Logging the results. ALL testing activities must be recorded. This
includes the scripts, logs, error messages, anomalies reported and
the data files, and anything else that has significance and would be
necessary to duplicate the test in the future.

• Assuming control of the source code after it passes the test. The
modified and now Year 2000 compliant source code must be
archived. The new source code must also be retained for future
testing as other changes are made in the future.

4.3 Test Preparation

Effective testing requires that a number of pieces come together
successfully. Someone has to make sure that these pieces are all in the
right place at the right time. Some of the pieces follow:

Reserve test hardware for given tests. It may not be possible (or
advisable) to run multiple tests on the same hardware
simultaneously. Schedule time on the hardware just like you
schedule conference rooms.

Properly configure test hardware, making sure that the appropriate
network connections, disk devices, modems, multiple terminals (to
simulate multiple users), tape drivers, and so on exist.

Load all required software onto the test system, including the
operating system, test tools, remote access software, and date
simulation program.

Make sure the most recent version of the software to be tested is
available. This task must be carefully checked if you have many
testers. Previous test efforts might have left uncertified software
on the machine. Executing the wrong version of software wastes
testing times and is extremely frustrating.

Make sure that the correct test data is in place. Test data might
exist for multiple time periods. Be certain that the desired data is
loaded onto the system when tests are performed.

Check the availability of all needed consumable items, such as
computer paper, tape cartridges, and floppy diskettes.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
7

Have any required logging or tracking software in place. It’s a
waste of time to have to repeat tests because you didn’t capture
logging information.

If local etiquette requires it, remove any software or data you loaded after
you finish. This reduces the chance that subsequent tests will
inadvertently run with your software or data.

5.0 Testing Year 2000 Changes

Testing software changes involves several different phases. This is true
for development projects, Year 2000 changes, and general fixes and
enhancements. Each testing phase is geared toward testing certain types
of errors. The combination of all types of testing is more likely to result in
reliable software.

5.1 Additional Hardware for Testing

You might have to buy or lease additional hardware for your Year 2000
testing. One example is if you can’t risk changing software on a
production system. Crashing a production job while running a test
program isn’t going to win you any friends with management, production
staff, or users.

Another potential effect on production applications is performance. If
systems are operating at their capacity now, adding testing activity might
be the straw that breaks the camel’s back. Extra processing might increase
the response time that users experience to unacceptable levels. Batch jobs
might not complete in their available windows.

Your current disk space might not be sufficient to add extra programs and
data. Test data can be a significant consumer of storage space. To add
new versions of programs and test data, you might have to add more disk
drivers.

Your business environment might require that Year 2000 activities be
performed during nonbusiness hours. This will require the team to work
nights. Besides disrupting people’s lives for a year or two, a schedule
shift has other negative effects. While working nights, they won’t be able
to easily communicate with other MIS staff or users. This will cause
problems if emergencies arise during the day while they are home asleep.
If hardware is available that is dedicated to testing, your team can test
during normal business hours.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
8

5.2 Involving Users in the Testing Process

Users need to be involved in the Year 2000 effort. Involving them in this
process has definite advantages:

• Project becomes “our” project.
• Users can provide insight into where dates are used.
• Users know how the system is supposed to work.
• In testing the system, users can make significant contributions.

The most important reason for involving the users in the testing process is
to add validity to the testing effort and to have access to the knowledge the
uses has on the system performance parameters.

It will be extremely difficult to build a valid set of tests, test scripts and the
data that will insure ALL conditions are tested.

Testing software changes involves several different phases. Each testing
phase is geared toward testing certain error types. The combination of all
types of testing is more likely to result in reliable software.

5.2.1 Unit Testing.

Unit testing is the act of testing a single program. Unit tests check the
correctness of Year 2000 changes at the program or module level. Any
module modified during the remediation effort must be unit tested. The
programmer who modified the module typically executes these tests.
Tests are conducted using debuggers, execution simulators, and interactive
testing tools. The programmer creates small test data files for debuggers
or selects decision points in an execution simulator. Validation is
performed manually by the programmer.

For specific test scenarios on unit testing, refer to the GAO Year 2000
Computing Crisis: A Testing Guide.

5.2.2 Integration Testing.

Integration testing checks the interfaces between sets of modules.
Performed by the test team with coordination from the Quality Assurance
(QA) group to all system owners, especially when the integration tests are
being run on external interfacing systems. The testing is best
accomplished by using a variety of data and observing how the application

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
9

responds. Checking interfaces is especially important for century-
compliance efforts as dates are typically passed across module interfaces.
During integration testing, individual modules are combined into
increasingly larger groupings (by function, related functions, subsystem,
etc.). The test data used for integration tests concentrates on the issues
that are caused by mismatched versions or incorrect module interfaces
rather than attempting to achieve complete test coverage. Integration tests
can use the tools and techniques for unit testing for small integration
groupings and system testing techniques for larger groupings.

For specific test scenarios on integration testing, refer to the GAO Year
2000 Computing Crisis: A Testing Guide.

5.2.3 System Acceptance Testing.

Similar to integration testing, but at a higher level. It tests the entire
system at one time instead of a single part of the system. These tests are
typically performed by the testing organization. System tests cover all
facets of application functionality and are designed to mirror the
application’s production operation. These tests will be conducted using
past, current, and future dates. They are validated by comparing the
results of parallel runs of the compliant and noncompliant versions of an
application.

For specific test scenarios on system acceptance testing, refer to the GAO
Year 2000 Computing Crisis: A Testing Guide.

5.2.4 Regression Testing.

Regression testing exposes problems that occur from changes made to
other modules of the system. Each regression test requires that every
feature in an application be tested again. Regression tests are designed to
ensure that existing functionality has not been affected by the Year 2000
migration. In theory, achieving century-date compliance should have no
effect on application functionality other than adding the ability to handle
century dates. Regression tests are run using the current date, and the
results of the tests are validated through comparisons of parallel runs of
compliant and non-compliant versions of the application.

For specific test scenarios on regression testing, refer to the GAO Year
2000 Computing Crisis: A Testing Guide.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
10

5.2.5 End-to-End Testing

The purpose of end-to-end testing is to verify that a defined set of
interrelated systems, which collectively support an organizational core
business area or function, inter-operate as intended in an operational (i.e.,
live production) environment. These interrelated systems include not only
those owned and managed by the Agency, but also the external systems
with which they interface. For example, since Agencies that administer
key federal benefits payment programs, such as the National Finance
Center, exchanges data with the Department of the Treasury which, in
turn, interfaces with various financial institutions to ensure that all
government payroll checks are issued, end-to-end testing of the federal
payroll function would include systems for all entities involved, as well as
their supporting telecommunications infrastructures.

For specific test scenarios on end-to-end testing, refer to the GAO Year
2000 Computing Crisis: A Testing Guide.

6.0 Creating Comprehensive Test Data

Unless complete regression test libraries are available, test data must be
created to support Year 2000 testing. This function encompasses all of the
activities and tools required in creating, manipulating, and managing test
data. Although Year 2000 projects have complex test data requirements,
careful planning and reuse during test data creation can reduce the effort
required to obtain adequate test coverage. There are three major methods
for creating test data: extracting production data, using a test data
generator, and manually creating test data. Extracting production data is
typically the easiest approach, but often results in low levels of test
coverage. Test data generators and capture/replay tools create test data
based on input parameters or by capturing keystrokes. Initial set-up can
be laborious for use in building complete regression libraries, but is useful
for building specialized test cases. Once created, test data can be reused
for multiple types of tests. For example, regression test data can be
forward dated for use in future date testing. Each year field in the
regression test data can be incremented by 28 to move it into the future
(e.g., 1996 becomes 2024). The use of 28 guarantees that all dates fall on
the same day of the week.

6.1 Data Quality

The quality of the test data can make or break the testing activity. All
testing data should be closely examined to insure that it would provide
complete valid testing. The test data must be of sufficient quantity and

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
11

diverse to provide the necessary tests that could be encountered in an
actual production environment. Good test data must be similar to
production data both in quantity and diversity

6.1.1 Quantity

There should be sufficient quantity of test data files to simulate the proper
loading of the tested system. All to often testing activities no not properly
load the system with enough test data to simulate real loading
characteristics and that must be avoided.

6.1.2 Diversity

Data that isn’t diverse can make a program look like it’s correct, when it
isn’t. Some of the data must be unusual or outright incorrect to fully test
the system / program. Diversity of languages, platforms, operating
system, databases, and other application environment tools and utilities
presents the greatest technical challenge for enterprise-level testing. Each
of these environments must be tested and certified before the applications
that operate within them can be certified. There are no standard testing
tools that can be used across all environments. Most tools are limited to
one or two languages on a single platform. Further, the number and
quality of the application testing tools available on the market decrease
quickly as the platforms become less common.

6.2 Specific Year 2000 Data

Test data for a Year 2000 project must reflect that goal. In order to insure
the programs are executing properly numerous variations of month, day
and year formats are required in our testing data files. Some examples are:

12/31/1998
01/01/1999
09/09/1999
10/01/1999
12/31/1999
01/01/2000
½/2000
01/03/2000
01/10/2000
02/28/2000
02/29/2000
03/01/2000
10/10/2000

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
12

12/31/2000
01/01/2001
02/28/2001
02/29/2001 invalid date
03/01/2001
12/31/2001
01/01/2002
02/29/2004

6.3 Generating Test Data

• Generate the test data manually or

• Obtain a data-generating tool or

• Capture existing production data and manually modify the dates to test
the year 2000 situation.

6.3.1 Day-of-week Calculations.

Check the day-of-week (DOW) calculation. This is used for tape backups,
report generation and when files or tapes are deleted.

6.3.2 Windowing Data

Windowing is a popular remediation repair strategy and one that is used
widely. Always determine the size of the window and then test both
within the window and outside the window. As an example: if the system
uses a 100-year window, test with the following dates to assure correct
display areas:

December 31, 1929, January 1, 1930
December 31, 2029, January 1, 2030

6.4 Examining Other Aspects of Testing

6.4.1 Leap Year.

2000 is a leap year and February 29th is a good date. This must be tested.
Check the 1st of March to be a Wednesday with DOW software.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
13

6.4.2 Third Party Software.

Third party software should be tested thoroughly and test data and test
cases should be created. Any errors found need to be identified and given
to the vendor for correction immediately.

6.4.3 Backup Procedures

Backup and restoration procedures are very dependent on dates and date
processing. Restoration processes are also heavily date dependent. The
backup must restore the most recent complete backup. It then needs to
apply the incremental backups for every day since the total backup. Dates
and day of week (DOW) logic drive all this information. Test the backup
and restoration procedures.

6.4.4 Integrating Other Changes

After changes have been made and testing is completed, regression testing
needs to be performed to assure there are no errors.

7.0 Testing Tools.

Testing without test tools is not practical. The amount of work to do is
simply too great to perform manually.

7.1 Debugger.

The debugger is a test tool that enables a programmer to observe exactly
what happens as a program executes by inserting breakpoints in the source
code. When a breakpoint occurs, the programmer can “look around” the
program and do the following:

• Examine contents of variables
• Alter the contents of variables
• Modify the source code from within the debugger
• Display the contents of any memory location.

7.2 Date Simulator.

Date simulators simulates the system time on a computer, usually a
mainframe computer. Date simulators operate by intercepting system date
requests from applications. Usually, date simulators maintain a list of
programs that should be given the simulated time. All other calling

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
14

programs are passed the true system time. This makes it possible to test a
specific set of programs at a given time.

• Changing the system time on a mainframe frequently requires
an IPL (Initial Program Load).

• If the system time is set forward, accounts and their passwords
may expire. This problem may cost more time than it’s worth.

• Product licenses of third-party software may expire when the
system time is set forward. Simply resetting the time may
violate the license agreement. Since 1972 is exactly the same
as the year 2000 in terms as the number of days and the day of
the week each day fallls on. Then setting the date backward to
test the leap ear feature of 2000 will preclude loosing licenses

• Frequently, files and data sets are given an expiration date
when they are created. These files may be automatically
deleted during testing. Change the expiration date to a time in
the future, i.e. 1/1/2020.

7.3 Data Aging Tools

Data aging tools age the data. To use, copy production data to a separate
file, volume. The data is aged, say 20 years and tests are run on the data.

7.4 Capture and Playback Tools

Capture and playback tools allow reproducing test sessions.

• Test sessions are replayed exactly
• Replays of test sessions run much faster
• Test sessions can be run unattended
• If results are different, the differences are logged.

7.5 Coverage Analysis Tools

Estimates of the percentage of code that will be directly affected by the
year 2000 problem range from 1 to 5%. A medium sized agency may
have 10,000,000 lines of source code. The lines affected range from
100,000 to 500,000. Even if the lower estimate is correct, that’s a lot of
source code.

• Produces such as, Workbench/2000 and VIA/Smarttest provide
coverage analysis. The results can be summarized and printed.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
15

7.6 Performance Analysis Tools

Year 2000 compliant programs will execute slower than the original
versions for a number of reasons:

• Additional logic has been added to programs
• Data records may be longer
• Data will be read in smaller blocks

Performance analysis is important only when the changes made as a Year
2000 remediation effort degrade the performance to an unacceptable level.
This problem can be solved. However, it is usually expensive because it
often requires a hardware upgrade.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
16

APPENDIX A
References
The following list of references is pertinent to the Year 2000 project.

1. ANSI X3.30 - Formatting Date Data

2. FIPS-4-1 (Revised 1996-03-25) - Federal or DOD procurements

3. ASC X12 EDI draft STD for trial use, ISO 9735, UN/EDIFACT -
Electronic commerce (EDI)

4. The Modified Julian Date (MJD) has been officially recognized by the
International Astronomical Union (IAU), and by the Consultative
Committee for Radio (CCIR), the advisory committee to the
International Telecommunications Union (ITU). The pertinent
document is CCIR recommendation 457-1 use of the modified Julian
dates by the standard frequency and time-signal services. This
document is contained in the CCIR "Green Book" Volume VII.

5. The Almanac for Computers also provides information on JD & MJD.

6. Additional, extensive documentation regarding the Julian Date (JD) is
contained in the Explanatory Supplement to the Astronomical
Ephemeris and Nautical Almanac, and in the yearbooks themselves,
now called The Astronomical Almanac.

7. Testing Very Big Systems; David Marks, McGraw Hill 1992, ISBN 0-
07-040433-X

8. Software Testing; Marc Roper, 1994, ISBN 0-07-707466-1

9. Testing Computer Software; Kaner, Tab, 1988, ISBN 0-8306-9563-X

10. Software testing in the Real World, improving the process; Edward Kit,
Addison-Wesley, 1995, ISBN 0-201-87756-2

11. Software Testing A Craftsman’s Appr; Paul C Jorgensen, ISBN 0-
8493- 7345-X

12. IEEE Standard for Software Verification and Validation Plans (IEEE
Standard 1012

13. IEEE Standard 829-1983 for Software Test Documentation (updated
1991)

14. Year 200 Solutions for Dummies, K.C. Bourne, IDG Books
Worldwide, Inc., 1997.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
17

APPENDIX B

Glossary

The following list of words may have special meaning in the context of the Year
2000 project.

Calendar errors Errors typically include failing to treat 2000 as a
leap year and converting incorrectly between date
representations.

Cluster A cluster is composed of multiple systems that
constitute a complete process.

Combined Component Any stand-alone, computer-based, commercial off-
the-shelf device or software package that has two
or more date/time functions that can affect test
results.

Compliance Year 2000 compliance means that neither
performance nor functionality is affected by dates
prior to, during and after Year 2000. Compliance
will be demonstrated when the criteria of General,
date, and century integrity are satisfied.

Component Any stand-alone, computer-based, commercial off-
the-shelf device or software package that has only
one date/time function that can affect test results.
The smallest unit of testing for the Year 2000
project.

Cross Cluster Testing The highest level of integration testing which is
organized around a particular function or across
functions. An example is a product order through
product delivery.

Date integrity All manipulations of calendar-related data (dates,
duration, days of week) will produce desired
results for all valid date values within the
application.

Date overflow Many software products represent dates internally
as a base date/time plus an offset in days, seconds,
or microseconds since that base date/time.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
18

Hardware integers holding the offset value can
overflow past the maximum corresponding date—
an event, which may lead to, undefined behaviors.

Explicit first 2 digits of
year

Date elements in interfaces and data storage permit
specifying the first 2 digits of the year to eliminate
date ambiguity.

Extended semantics In general, specific values for a date field is
reserved for special interpretation. The most
common example is interpreting "99" in a 2-digit
year field as an indefinite end date, i.e., "does not
expire." Another is embedding a date value in a
non-date data element.

First 2 digits of year
ambiguity

This is the most common element. Software
represents dates with a 1- or 2-digit year. When
software does not recognize that dates are not all
in the 19xx range, the results are undesirable.

General integrity No value for current date will cause interruptions
in normal operation.

Gregorian Calendar Revision of the Julian calendar in 1582 by Pope
Gregory XIII, adopted by the US and Great Britain
in 1752. Added that centesimal leap years must be
divisible by 400 rule and suppressed 10 or 11 days
during 1700.

Inconsistent semantics At interface between systems, software on each
side assumes semantics of data passed. Software
must make same first 2 digits of date assumptions
about 2-digit years.

Independent Verification
& Validation

The process of an entity verifying and validating
findings of another entity while staying completely
neutral as to the outcome of the process.

Julian Calendar Introduced in Rome in 46 B.C., it established a 12
month year of 365 days with every 4th year having
366 days.

Julian Date Julian Date (JD) is the number of days since Noon
4713 BC plus the fractional part of a day for the

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
19

time of day past Noon.

Modified Julian Date Number of days to 5 digits and shifted the
beginning of the time of day to Midnight. For
1997, the MJD is 50448 + DOY (day of year).

Modified Julian Date (MJD) is the Julian Date minus 2,400,0005 which
reduced the size of the Real-time Clock A battery
operated clock which keeps time when the system
is powered off Virtual Clock. A software based
clock used in some operating systems to maintain
the time and date as an operating system service.

System A system is composed of multiple combined
components and/or components that form part of a
operating process, i.e. pay roll program,
Production Cell.

Test plan A test plan is a documented set of test cases and
test scripts.

Test case A test case is a documented test procedure with
specific input data and expected test results.
Example - rollover Dec 31, 1999

Test procedure A test procedure is a step by step description of the
test to be performed. Example – rollover

Unit A Unit is the minimum recognizable level to
which equipment containing a date/time function
or processor can be broken down. The Inventory
will be composed of multiple Units.

Year 2000 Ready There will be no impact on production nor product
quality due to Year 2000 date issues, but
compliance is NOT required.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
20

APPENDIX C

Various Test Procedures

Several test scenarios have been developed as a result of problems identified with
the year 2000. This limited set of tests cannot prove a component/system to be
Year 2000 compliant, but using them will help identify several frequently
observed problems. These test procedures are written as general instructions.
Specific knowledge of the systems or components under test is also required in
order to apply these test cases.

A brief description of each test is provided for guidance in conducting tests on
systems with unknown status.

The following test procedures provide step by step instructions for performing
each test. The results should be recorded step by step as the test is performed to
ensure accurate records of the test are documented on the “Year 2000 Test
Report” form. The test results should be retained locally.

1. Critical Date Values for Year 2000 Testing

The following dates should be tested for proper operation:

 1.0000-00-00 Special Value
 2.1998-12-31 Rollover, Reboot
 3.1999-01-01 Special Value
 4.1999-09-09 Special Value
 5.1999-12-31 Special Value, Rollover, Reboot
 6.2000-01-01 Day of Week, Day of Year
 7.2000-02-28 Rollover, Reboot
 8.2000-02-29 Rollover, Reboot, Day of Week
 9.2000-03-01 Day of Week
 10.2000-12-31 Rollover, Reboot, Day of Week, Day of Year
 11.2001-01-01 Day of Week, Day of Year
 12.2027-12-31 Rollover, Reboot, Day of Week, Day of Year

2. Rollover, Reboot, Day of Week Tests

The rollover test checks for proper handling of the date transition from
1999 to 2000 without manual intervention. Based on actual tests several
different results have been observed as examples of incorrect handling of
the transition from 1999 to 2000. Many systems used 2-digit dates and the
result may be a rollover to year 100; sometimes the 19 is assumed and the
result is the year 19100. For other unknown reasons the years 2001, 2028,

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
21

and non-printable characters have been observed. The effect of incorrect
date calculations may include negative numbers.

The reboot test checks for correct date & time storage during power cycles
of the system. The system may function correctly when the time is set
ahead, but revert to another time and date when the power is cycled. Many
PC’s revert to 1980 or 1984 when rebooted after the year 2000.

The day of the week may be incorrectly calculated. Systems should
display the day of the week of January 1, 2000 as Saturday, not Monday,
which may mean January 1, 1900.

A. Rollover - 1999 to 2000 - Power on

Test:
♦ Set the date to 31 Dec. 1999.
♦ Set the time to 23:59 (11:59 p.m.).
♦ Observe the system date after 00:00 am

Expected Result:
♦ The system clock advances into the year 2000 and continues

normally.

B. Day of Week

Test:
♦ The clock is set to 1 Jan 2000.
♦ Observe the system day of week display.

Expected Result:
♦ The system displays the day of week as Saturday. (1 Jan 1900

was a Monday)

C. Reboot - Date retention

Test:
♦ Set the date to 1 Jan 2000.
♦ Power down the system.
♦ Power up the system.
♦ Observe the system date

Expected Result:
♦ The system clock still displays the year 2000 and operates

normally.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
22

Note: Many personal computers reset themselves to 04 January
1980, or some other past date, whenever they reboot, if the CMOS
real time clock says the year is 00.

D. Rollover - 1999 to 2000 - Power Off

The procedure specifies 10 minutes before mid-night, but a smaller
time may be appropriate. Be sure you can shutdown the system
before the rollover occurs.

Test:
♦ Set the date to 31 Dec. 1999.
♦ Set the time to 23:50 (11:50 p.m.).
♦ Power down the system before it can roll over to year 2000
♦ Wait until after midnight with the power off.
♦ Power up the system.
♦ Observe the system date

Expected Result:
♦ The system clock advances into the year 2000 and operates

normally.

3. Manual Date Set Test

These test checks for correct date & time entry to initialize the system
clock. The “set system date” function may operate incorrectly when the
time is set ahead, not allow entry over a certain date range, or revert to
another time and date when set. Some PC’s revert to a default date (1980
or 1984) when set to a date in the year 2000. Some systems have multiple
date set functions; for a PC the date may be set using the CMOS Setup
program at power on, using a DOS date function, or using a windows
clock or control panel interface. The tests in this section should be
executed on all date set functions for the system.

The date set function may also be accessed through an application-
programming interface (API). If the equipment has a battery backed up
clock, the date set test may include removing both battery power and
external power to completely initialize the system clock and attempting to
set the date to 1 Jan 2000. Exercise caution to document all system
configurations when attempting this test because the configuration may be
lost upon removal of the battery.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
23

A. Date Set - 1 Jan 2000

Test:
♦ Set the date to 1 Jan 2000.
♦ Observe the system date

Expected Result:
♦ The date should be Saturday, 1 Jan 2000.

B. Date Set - Date retention

Check to insure that the date set function sets the real-time clock,
not just the system’s virtual clock.

Test:
♦ With the date still in the year 2000, power down the system.
♦ Power up the system.
♦ Observe the system date

Expected Result:
♦ The system clock still displays the year 2000 and operates

normally.

Note: Some PC’s which fail the Reboot - Date retention test will
pass the manual Date retention test. This is a possible fix for those
PC’s.

C. Date Set - 29 Feb. 2000

Test:
♦ Set the date to 29 Feb. 2000.
♦ Observe the system date.

Expected Result:
♦ The date should be Tuesday 29 Feb. 2000.

D. Leap Year Test

The leap year test checks the logic, which calculates valid dates for
leap year. An example of a failure on leap year was published on
the Internet, which told of 66 industrial controllers in a steel mill
all locking up when the date calculation for leap year 1996
occurred. A 2-digit year representation presents a possible divide
by zero problems. The year 2000 leap year calculation is more

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
24

complex because multiple exceptions apply to the calculation,
leading to greater opportunities for error. The following are leap
year considerations:

• if the year is divisible by four, it is a leap year;
• if the year is divisible by 400, then it is a leap year;
• if the year is 3600, it is not a leap year.

E. Leap Year - Rollover 2/28 - Power On

Test:
♦ Set the date to Monday 28 Feb. 2000.
♦ Set the time to 23:59 (11:59 p.m.).
♦ Observe the system date after midnight

Expected Result:
♦ The date should be Tuesday 29 Feb. 2000.

F. Leap Year - Reboot 2/29

Test:
♦ Set the date to 29 Feb. 2000.
♦ Power down the system.
♦ Power up the system.
♦ Observe the system date

Expected Result:
♦ The date should be Tuesday 29 Feb. 2000.

G. Leap Year - Rollover 2/29 - Power On

Test:
♦ Set date to 29 Feb 2000
♦ Set the time to 23:59 (11:59 p.m.).
♦ Observe the system date after 00:00 am

Expected Result:
♦ The date should be Wednesday 1 March 2000.

4. Date Window Tests

Windowing date systems assume the first 2 digits of a 4-digit year to be 20
for values below the switch value and 19 for values above the switch
value. An example switch value of 50 provides for a range of 1951 to

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
25

2049. If the 2-digit year is greater than 50 the year is assumed to be 19xx.
That is, 84 is greater than the switch value so the year is 1984. If the 2-
digit year is less than 50 the year is assumed to be 20xx. That is, 34 is less
than the switch value, so the year is 2034. When two integrated systems
share date information in this format be sure to test the interface at the
boundary conditions. Is the behavior specified when the year is the switch
value? Do both sides of an interface switch the same way?

Systems using date windowing should consider testing:

Creation of date data at the switch boundary dates, above and below;
Modification of configurable windowing parameters, i.e. changes the
switch value; Modified switch boundary dates, above and below.

A. Date Window Test - Below Limit

Test:
♦ Observe the configured switch value.
♦ Change the current date to one year below the switch value.
♦ Observe a 4-digit date.

Expected Result:
♦ The date assumes 20xx.

B. Date Window Test - Above Limit

Test:
♦ Observe the configured switch value.
♦ Change the current date to one year above the switch value.
♦ Observe a 4-digit date

Expected Result:
♦ The date assumes 19xx.

C. Date Window Test - Change Limit

Test:
♦ Change the configurable switch value to 2004.
♦ Observe the configured switch value.

Expected Result:
♦ Limit has been changed to 2004

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
26

(Repeat the above and below limit tests to confirm the limit has
changed.)

5. Other Date Representation Tests

The following date formats occur often enough that a brief description is
included to stimulate thinking about possible date related functions and
interface definitions:

Julian Date (JD) - a real number where the integer part represents the
number of days since 12:00 Noon 1 January -4712 (Julian day zero) and
the fraction part is the part of the 24 hour day past Noon;

Modified Julian Date (MJD) - the Julian Date minus 2,400,000.5 shifting
the reference date to Midnight 17 November 1858. This reduces the
number to 5 digits for the next 150 years. In 1997 the MJD = 50448 +
DOY; Gregorian Date in Day of Year formats (DOY); Dates represented
using a YYDOY or YYYYDOY format where Y is the Year in 2-digit or
4-digit format and DOY is the day of the year from 001 to 365 (or 366 on
a leap year) should be tested for correct operation.

The following DOY dates should be checked:

� 29 February 2000 should be 00060 or 2000060;
� 31 December 2000 should be 00366 or 2000366;
� Invalid Dates like 98000, 98367, 00000, and 2000000;
� Special Codes 99365.

A. DOY - 29 February 2000

Test:
♦ Set the date to 29 February 2000.
♦ Observe the DOY date by function call or system display.

Expected Result:
♦ 29 February 2000 should be 00060 or 2000060.

B. DOY - 31 December 2000

Test:
♦ Set the date to 31 December 2000.
♦ Observe the date by function call or system display.

Expected Result:
♦ 31 December 2000 should be 00366 or 2000366.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
27

C. DOY - Invalid Dates

Test:
♦ Attempt to set the DOY date to 2000000.
♦ Observe the DOY date function call return value.
♦ Attempt to set the DOY date to 98367.
♦ Observe the DOY date function call return value.

Expected Result:
♦ Error codes or messages as documented by vendor.

6. Arithmetic Date Tests

If dates are used in any calculations, test for correct operation. The
following list is intended to help identify functions, which should be
checked:

� Period calculations;
� Financial functions based on a time period;
� Shelf life calculations; Time Remaining.

A. Days in 2000

Test:
♦ Create a period calculation using 1-Jan-2000 as the start date

and 31-Dec-2000 as the end date.

Expected Result:
♦ The year 2000 has 366 days.

B. Days across 1999/2000 Boundary

Test:
♦ Create a period calculation using 1-Dec-1999 as the start date

and 31-Jan-2000 as the end date.

Expected Result:
♦ The period ((31 January 2000)- (1 December 1999)) has 61

days.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
28

C. 3 Days across leap year

Test:
♦ Create a period calculation using 1-Feb-2000 as the begin date

and 1-Mar-2000 as the end date.

Expected Result:
♦ The month of February has 29 days.

7. Upload / Download Tests

The upload and download tests check for logic, which prevents new files
from replacing old files when the date comparison uses only 2 digits. The
logic must be reversed when the dates cross the year 2000 boundary. Test
to see if a file created in (19)99 is considered older than a file created in
(20)00. Systems have failed to down load new programs because they
were assumed to be older that the current program on the system.

 Old File Date New File Date 2-digit difference 4-digit difference

 July 4, 1998 July 4, 1999 +1 +1

 July 4, 1999 July 4, 2000 -99 +1

 July 4, 2000 July 4, 2001 +1 +1

A. Upload

Test:
♦ Set the date of the control system to January 11, 2000.
♦ Attempt to upload the test file.

Expected Result:
♦ Verify that the new file was uploaded.

B. Download

Preparation:
♦ Download the existing test file with a date prior to January 1,

2000.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
29

♦ Create a new version of the test file to download with the file
date January 5, 2000.

Test:
♦ Set the date of the control system under test to January 10,

2000.
♦ Attempt to download the January 5, 2000 test file.

Expected Result:
♦ Verify that the new file was downloaded.

8. Special Value Test

The special value test checks for usage of values in date fields for special
purposes that are not dates. An example is special handling of the date
September 9, 1999, which may be used as a special code for software
license expiration dates, or never expires codes, and/or errors. Systems
integrated to higher level systems should be subjected to special value
tests. Special values considered should include the date values 9-9-99, 0-0-
00, and x-x-9999. This test applies to applications, which create records
containing the current date as a time or data field, such as database
applications, or systems, which maintain historical data.

Test:
♦ Set the current date to a special value (e.g. 9-9-99, 9-9-

1999, 0-0-00, and 0-0-0000).
♦ Observe the number of records in a test file at the start of

the test.
♦ Using the application under test, create a new record that

contains the current date.

Expected Result:
♦ Observe that the application was able to create the test

record.
♦ Observe that the test record is included in displays or

reports as applicable.
♦ Observe that the end of file continues to function correctly

(e.g. number of records correct?).
♦ Observe that the test record can be deleted from the system.

Examples of failure include:
♦ Not terminating an expired software license;
♦ Failing to age backup tapes for recycling as scratch tapes;

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
30

♦ End-of-file markers, which use the date field with a special
value,

♦ function incorrectly.

9. File or Directory Creation Test

These tests check for observed problems with file or directory creation
when the file name is based on an incorrect year date. These tests apply to
any system, which can store information collected from the manufacturing
process, or allow for editing and creating files. Errors can occur when the
system attempts to create data files after the year 2000 and the date
rollover is incorrect. Systems, which create file names based on the time
and date, have been observed to lockup when the file name contained non-
printable or illegal characters. Another possibility exists when the file
already exists and is being updated. Most user interfaces prompt for
verification, “Do you wish to replace file foo.dat 12/30/99 with file
foo.dat 01/03/00?” Will the newest file replace the older file in both the
prompt and the actual replacement? Is the file identifier “FILE00”
assumed to be older than “FILE99”?

A. File - Creation 2000

Test:
♦ Set the date of the system under test to a date beyond January

1, 2000.
♦ Create an event or choose a time such that the system will

attempt to create a file.

Expected Result:
♦ Verify that the new file was created.
♦ Verify that time stamped information is valid inside any history

or log files.
♦ Verify that any history or the application or system can use log

files.

Examples:
♦ Systems, which store historical data that create files using a

name, based on the date.

B. File - Replacement 1999-2000
Test:
♦ Create an old test file in 199X with data identifiable for 199X.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
31

♦ Set the date of the system under test to a date beyond January
1, 2000.

♦ Create a new test file with the same name and new data.

Expected Result:
♦ Observe the prompt for the correct order of replacement, and

replace old file with new file.
♦ Verify that the old file was replaced with the new file.
♦ Verify that the file contains the new data.

Examples:
♦ Systems, which prompt for confirmation during, file updates,

such as file managers.

C. File - Replacement 2000-2000

Test:
 Create an old test file in 2000 with data identifiable for 2000.
 Set the date of the system under test to a date beyond the creation
 date of the old file.
 Create a new test file with the same name and new data.

Expected Result:
♦ Observe the prompt for the correct order, replace old with new

file
♦ Verify that the old file was replaced with the new file.
♦ Verify that the file contains the new data.

Examples:
♦ Systems, which prompt for confirmation during, file updates,

such as file managers.

10. Audit Log Test

This test checks for problems with audit logging systems. This test applies
after the year 2000 and observing the alarm display pages or reports for
correct ordering of the alarm data. Failure examples include monitoring
packages, which place new alarms at the end of the list after 2000. One
test is to query for all items from now until 12-31-1999 and observe the
results, then query for all items from now until 1-2-2000 and observe the
results. Some systems fail this test by not returning any records on the
second query.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
32

A. Report - Query

Test:
♦ Set the date of the control system under test to a date beyond

January 10, 2000.
♦ Create new data by forcing a fault or some system event, which

will create test records.
♦ Set the date of the control system under test to a date beyond

March 1, 2000.
♦ Create a new report containing the Year 2000 data by choosing

four time spans:
 a) November 15, 1999 to December 31, 1999 (1999 data);
 b) November 15, 1999 to March 1, 2000 (all data);
 c) January 1, 2000 to March 1, 2000 (2000 data);
 d) February 1, 2000 to March 1, 2000 (no data).

Expected Result:
♦ Verify that the report with all data, b), contained all the data in

the report.
♦ Verify that the data was ordered correctly in the report.
♦ Verify that the report with no data, d), executed correctly and

no data was printed in the report.

B. Report - Sort

Test:
♦ Set the date of the control system under test to a date beyond

January 1, 2000.
♦ Create new data by forcing a fault or some system event, which

will create test records.
♦ Create a new report containing the Year 2000 data by choosing

a valid time span.

Expected Result:
♦ Verify that the new data was ordered correctly in the report.

C. Report - Merge

Test:
♦ Set the date of the control system under test to a date beyond

January 1, 2000.
♦ Create new data by forcing a fault or some system event, which

will create test records.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
33

♦ Create a new report containing the Year 2000 data by merging
new data.

Expected Result:
♦ Verify that the new data was merged correctly in the report.

D. Report - Search

Test:
♦ Query or Search for an existing record created in the year 1999

with the current time in the year 1999.
♦ Query or Search for an existing record created in the year 1999

with the current time in the year 2000.
♦ Query or Search for an existing record created in the year 2000

with the current time in the year 2000.

Expected Result:
♦ Verify that all records are found as expected.

E. Log file purge Test

The log file purge test applies to manufacturing systems, which
periodically purge old data to maintain file system space by
deleting the oldest data. The problem identified occurs when after
the year 2000, files with year data lower than other files (e.g. 1998
is less than 1999) are removed. Does the system consider data with
a year date of 2000 to be less than 1999? If the comparison is only
considering 2- digit years, this will happen and newer data can be
purged.

Test:
♦ Verify that log data backups are available.
♦ Set the date of the system under test to a date beyond January

10, 2000.
♦ Create new data for the log file or rename some existing data.
♦ Attempt to purge data from the system older than 7 days.

Expected Result:
♦ Verify that only data from before the purge date was removed.
♦ VAX/VMS RMS purge command
♦ Database products, which support a purge function

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
34

F. Timer Test

This test verifies the creation and operation of event timers in
systems or software, which provide these capabilities.

Test:
♦ Set the date of the control system under test prior to 2000.
♦ Create new timer to wake up or alarm to trigger at 10:01 AM,

January 3, 2000
♦ Set the date of the control system under test to January 2, 2000.
♦ Create new timer to wake up or alarm to trigger at 10:02 AM,

January 3, 2000
♦ Set the date of the control system under test to January 3, 2000.
♦ Set the time to 10:00 AM.
♦ Wait for the alarms to trigger

Expected Result:
♦ Verify that the alarm or timer created before 2000 operates

correctly.
♦ Verify that the alarm or timer created after 2000 operates

correctly.

Examples:
♦ UNIX chron scheduling software;
♦ SCADA package timer functions;
♦ HVAC Controls for starting and stopping ventilation or cooling

equipment.

G. Input Data Test

The input data test applies to manufacturing systems, which read
date information from labels or other manufacturing control
systems.

Test:
♦ Set the date of the control system under test to January 2, 2000.
♦ Create input labels or simulate input from other systems with a

date beyond 1-1-2000 (or 1-1- 00).
♦ Attempt to read the input data.

Expected Result:
♦ Verify that the system correctly reads the input data.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
35

H. Output Data Test

The output data test applies to manufacturing systems, which write
date information to labels or other manufacturing control systems.
Systems, which print results to a printer or operator display, have
been found to lock up or fail to display data after the year 2000.
The cause is that from the year date rollover, invalid characters can
be produced.

Test:
♦ Set the date of the control system under test to a date beyond

January 1, 2000.
♦ Attempt to output data.

Expected Result:
♦ Verify that the data was output correctly.

Examples:
♦ Printed labels or product markings;
♦ Transfer data to other systems.

11. Activation/Deactivation Tests

This test applies to manufacturing systems, which contain passwords,
accounts, or complex software license systems, which contain expiration
functions.

A. Valid access

Test:
♦ Check that the expiration date extends past January 1, 2000
♦ Set the date of the system under test to a date beyond January

1, 2000.
♦ Attempt to execute the software licensed, or use the affected

password, account, etc.

Expected Result:
♦ Verify that the software executes properly after January 1,

2000.

B. Expired access

Test:
♦ Check the expiration date.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
36

♦ Set the date of the system under test to a date after the
expiration date in the year 2000 or beyond.

♦ Attempt to execute the software licensed, or use the affected
password, account, etc.

Expected Result:
♦ Verify that the software does not execute after the expiration

date.

C. Display Data Tests

The display data test applies to manufacturing systems, which
display date information on several different pages. The test must
include moving the date ahead to the year 2000 and observing
every screen, which the controller contains. The non-compliance
can range from partial display to complete control system lockup.
Many industrial controllers have unique software for each display
screen, and may behave differently on any screen. Examples of this
include: CNC controllers, which may have one set of display pages
for tool management, another set of display pages for fault
annunciation, and another for the file system, all of which may
have software written by different persons or teams of persons over
the product development life cycle.

Test:
♦ Create a list of all the date fields on all the display screens.
♦ Set the date of the system under test to a date beyond January

1, 2000.
♦ Create new files or fault records.
♦ Attempt to display all date fields on all display screens for file

dates or fault time stamps.

Expected Result:
♦ Verify that each date field displays correctly.

Examples:
♦ A software application supports 4-digit dates in the 20xx range

using a DBMS but only passes 2-digit years to the DBMS
which defaults to 19xx and stores the wrong date.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
37

12. Indirect Date Usage Tests

These tests apply to systems, which use date information in an indirect
manner. The following list is intended to stimulate questions about a
system, which could use the date in functions that do not require date
information, but may have been implemented, using a date function.

Test:
♦ Identifying functions, which use the date indirectly, may be

very difficult.

Expected Result:
♦ Where identified, verify correct operation in the year 2000.

Examples:
♦ Encryption/Decryption algorithms;
♦ Random Number generators;
♦ Communications protocols;
♦ Firmware.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
38

APPENDIX D

Test Plan Review Checklist

1. Test Issues Checklist

The following sections provide a list of questions, which can be used to review a
test plan for completeness.

1.1. General Integrity

1. System date can be set to high-risk dates:
 1999-12-31, 2000-01-01, 2000-02-29

2. Re-initialize from cold start on high-risk dates:
 1999-12-31, 2000-01-01, 2000-02-29

3. System date rolls over correctly to/from high-risk dates:
 1999-01-01, 2000-01-01, 2000-02-29, 2000-03-01

4. Does the programming language provide a function to obtain
the system date on the host or through a time service?

5. Does this function return the correct system date value for high-
risk dates (1999-12-31, 2000-01-01, and 2000-02-29)?

6. Does this function return the correct value for system date after
the system date rolls over on high- risk dates (1999-01-01,
2000-01-01, 2000-02-29, 2000-03-01)?

7. Are there third-party products embedded in this application?
Are all these products Year 2000 compliant?

8. Does the application code ignore values for explicit first 2
digits of year in the system date at any point in the program
logic?

1.2 Date Integrity

9. Does the programming language support a data type for date
values in the range 1900-01-01 to 2050- 12-31?

10. Does the application make a leap-year calculation? Do these
calculations treat 2000 as a leap year and 1900 as a non-leap
year?

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
39

11. Does the date arithmetic correctly calculate duration
(differences) between dates, add dates and duration, compute
date of week?

12. Does the application convert date values from one
representation to another (e.g. YMD to Julian to base-and-
offset internal)? Does software correctly convert between
date representations according to the Gregorian calendar?

13. Does the application compare dates in any of its branching
logic or calculation of Boolean values? Do all these
comparisons produce correct results for all combinations of
values with the expected ranges for dates?

15. Does the application include searching, sorting, merging, or
indexing on internal tables, linked lists, or other data
structures based on date variables? Do these operations
perform correctly for all possible values for dates in the key
variables? Does a key index, which includes a date field,
produce correct sequence across dates in 19xx and 20xx?

16. Does the application represent dates in any variable as an
offset from a base date/time? What is the maximum value for
a date for this representation? What is the minimum value for
a date for this representation (usually the base date)? Does
the expected range of values for each variable using this date
representation fall within these extremes?

16. Does the application use assigned values for the date from
one variable to another? Are the first 2 digits of the value
truncated during any assignment? Is the value in the target
variable eventually used in a date manipulation, which
requires the explicit 4-digit value for correct results?

17. Does the application use language features, which map a data
address to more than one variable (such as REDEFINE in
COBOL or COMMON in FORTRAN)? In all aliases for the
same data space, does any variable ignore or truncate a value
for explicit first 2 digits in the date value? Is the truncated
value for date eventually used in a manipulation, which
assumes that all values for date share the same first 2 digits?

18. Are constants for date values (including day, month, or year)
used in any manipulation? Is the date constant intrinsic to the

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
40

functional requirements or a special value used in a "date"
data type for convenience?

19. Does the application store and retrieve dates accurately for
values in the range 1900-01-01 through 2050-12-31?

20. Does the application use sort/merge utilities to order file
contents on date fields or use indexed file structures keyed on
date fields? Is this order correct for all values of dates in the
range 1900-01-01 through 2050-12-31?

21. Does the application rely on primary or alternate indices on a
structured database for search, insert, update, or delete
functions in which any key contains a date field? Will the
index order be correct for all values for date in the range
1900-01-01 through 2050-12-31?

22. Are all date variables initialized to some convention for null
value?

1.3 Explicit First 2 Digits of Year

23. Does the application use a language, toolkit, and/or
application generator, which permits explicit first 2 digits in
the date data types? If so, are values for first 2 digits in
variables of these types supplied from external input or
derived within the software logic?

24. Does the application use a DBMS or other layered (or
horizontal) software product for data persistence to store and
retrieve date variables? If so, can these products support
explicit values for first 2 digits in any date variable stored
and retrieved?

25. Does the application have external interfaces (I/O, APIs,
external subprogram calls, IPCs, library routines, HMI)
which contains a date variable with explicit first 2 digits of
year? Does the software ignore, truncate, or write over the
first 2 digits in a value in any such variable as it flows
through the program logic to any other external interface? In
any such flow, could any logic alter the value for the first 2
digits of a year in any manner inconsistent with generalized
manipulations based on the Gregorian calendar?

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
41

26. Do all representations of date with explicit first 2 digits both
internal to the application and in all interfaces satisfy the
criteria for date compliance?

1.4 Implicit First 2 Digits of Year

27. Does the application use a language, toolkit, and/or
application generator (including GUI builders) which permits
date representation without explicit first 2 digits in the date
data types? If so, are the first 2 digits derived for any
manipulations, for passing a date value across any interface,
or for permanent storage? If so, is the value for the first 2
digits correct for all possible values of date that each such
variable can hold?

28. Does the application use constant values for date or portions
of date (i.e., day, month, or year)? If so, for any constant,
which is, a full date value or value for year, are the first 2
digits explicit in the value? Do all manipulations using each
constant value, directly or indirectly (that is, carried via
variables to other operations in the program logic), produce
the correct results for all possible values for such date
variables?

29. Does the application use any application-program interface
(API), such as in-line SQL or IMS DML, which passes date
variables? If so, for any date value supplied across this
interface, does the receiving software provide a default or
derived value of the first 2 digits of date? Are the rules for
derivation on both sides of the interface consistent with each
other for all possible values for a date in the respective
fields?

30. Does the application support a user interface containing date
fields without the explicit first 2 digits of that date? Are the
first 2 digits of a date in each field unambiguous to a user for
all possible values for that date in each such field?

31. Do all the date representations, both internal to the
application and in all interfaces, satisfy the criteria for date
compliance?

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
42

2. Year 2000 Testing Report Forms

The following sections explain the purpose and use of the Year 2000 Test
Report and Year 2000 System Test Report Forms. By responding with
your test results in these standardized formats, testing data can be shared
throughout your organization.

2.1 Test Report Purpose

The purpose of the Year 2000 Test Report Form is to capture the
results of Year 2000 testing on components shared throughout the
corporation and to record the test results of unique systems. When
testing combined components use the Combined Component Test
Report, and for manufacturing systems use the Systems Test
Report.

2.2 General Test Report Instructions

Result - Pass, Fail, Not Applicable
Effect - I (Inconvenient), S (Severe) or C (Catastrophic)
Severity - scale rating failure from 1 to 10 where:

 1.- MILD - misspelled words
 2.- MODERATE - misleading or redundant information
 3.- ANNOYING - truncated names
 4.- DISTURBING - some transactions not processed
 5.- SERIOUS - lose a transaction
 6.- VERY SERIOUS - incorrect transaction execution
 7.- EXTREME - frequent very serious errors
 8.- INTOLERABLE - database corruption
 9.- CATASTROPHIC - system shutdown
 10.- INFECTIOUS - shutdown spreads to other systems

3. Year 2000 Component Test Report Instructions

3.1 Header

Component Name - name of component as used in the inventory
master naming guide.

Date - Date that the test was completed.

Location - Location of equipment.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
43

Manpower requirements - The quantity of persons required for this
test.

Total Time - Total net time in man-hours to do all of the applicable
tests.

Contact Name - Name of the qualified person performing the test.

Vendor - Name of the manufacturer or vendor of the
hardware/software component.

Model - Model name that is used in the inventory process.

Version - Name/Number of the version of the component.

3.2 Tests

Result - Enter P (Pass), F (Fail) or N/A (for Not Applicable).

Pass if the expected results are observed. Fail if abnormal results
occur. N/A if the test is not applicable.

If the test fails, complete the comment field for that test to
document the issues according to the instructions below.

Result Comments - If result was Pass or N/A then comments are
not obligatory.

If the result was fail then the comments are obligatory to describe
the failure.

Effect - Code to describe the effect of failure.

If the Result was Pass then input either D (for Date) or N (for No
date) in the Effect field depending on whether a date function was
found.

If the result was Fail then input either I (Inconvenient), S (Severe)
or C (Catastrophic) in the Effect field.

If the result was Not Applicable, do not enter anything.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
44

3.2.1 Year 2000 Component Test Report Form

Refer
ence
Num
ber

Test Name Results Effect Result Comments

2 Rollover, Reboot, Day of week
2A Rollover - 1999 to 2000 - Power on
2B Day of Week
2C Reboot – Date Retention
2D Rollover 1999 to 2000, Power off
3 Manual data set
3A Date Set – 1 Jan 2000
3B Date Set – Date retention
3C Date Set – 29 Feb 2000
3D Leap Year Test
3E Leap Year –rollover 2/28
3F Leap Year – reboot 2/29
3G Leap Year – rollover 2/29
4 Date Window tests
4A Date Window test below limit
4B Date Window test above limit
4C Date Window test change limit
5 Other date tests
5A DOY – 29 Feb 2000
5B DOY – 31 Dec 2000
5C DOY – invalid dates
6 Arithmetic date tests
6A Days in 2000
6B Days across 1999/2000
6C Days across leap year
7 Upload / download tests
7A Upload
7B Download
8 Special value test
9 File or Directory Creation test
9A File Creation 2000
9B File – replacement 1999-2000
9C File – replacement 2000-2000
10 Audit Log test
10A Report
10B Report – Sort

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
45

10C Report – Merge
10D Report – Search
10E Log file purge test
10F Timer test
10G Input data test
10H Output data test
11 Activation/deactivation test
11A Valid access
11B Expired access
11C Display data tests
11D Indirect date usage tests

3.2.2 Year 2000 Combined Component Test Report Purpose

The purpose of the Year 2000 Combine Component Test Report Form is
to capture the results of Year 2000 testing on combined components and to
record the test results.

3.2.3 Year 2000 Combined Component Test Report Instructions

Plant/Site Name - Name by which the plant or site is commonly known.

Contact Name - Name of the qualified person performing the test.

Date - Date that the test was completed.

Location - Location of equipment.
Area - Name of the particular manufacturing area within the site. Use real
names not acronyms.

Combine Components Name - unique name of the combined component.

Overall Result (1-10) - severity of failure as documented

Overall Result Comments - any comments regarding overall failures.

Manpower requirements - The quantity of persons required for this test.

Total Time - Total net time in man-hours to do all of the applicable tests.

3.2.4 Subheader

Identify each component active in the test:
Vendor - Name of the manufacturer or vendor of the hardware/software
component.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
46

Model - Model name that is used in the inventory process.

Version - Name/Number of the version of the hardware/software
component.

Component Type - one of the standard component types.

3.2.5 Tests

Result - Enter P (Pass), F (Fail) or N/A (for not applicable)

Pass if the expected results are observed.

Fail if abnormal results occur. N/A if the test is Not Applicable.

If the test fails, complete the comment field for that test to document the
issues according to the instructions below.

Result Comments - If result was Pass or N/A then comments are not
obligatory, but if the result was fail then the comments are obligatory to
describe the failure.

Effect - Code to describe the effect of failure.

If the Result was Pass then input either D (for Date) or N (for No date) in
the Effect field depending on whether a date function is found.

If the result was Fail then input I (Inconvenient), S (Severe) or C
(Catastrophic) in the Effect field. If the result was Not Applicable, do not
enter anything.

3.2.6 Year 2000 Combined Component Test Report Form is the same as
Year 2000 Component Test Report Form, used a combined / summarized
report

3.2.7 Year 2000 System Test Report Purpose

The purpose of the Year 2000 System Test Report Form is to capture the
results of Year 2000 testing on manufacturing systems and to record the
test results.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
47

3.3 Year 2000 System Test Report Instructions

3.3.1 Header

System Name - Unique name of manufacturing system used in the
inventory.

Date - Date that the test was completed.

Location - Location of equipment.

Manpower requirements - The quantity of persons required for this test.

Total Time - Total net time in man-hours to do all of the applicable tests.

Plant/Site Name - Name by which the plant or site is commonly known.

Area - Name of the particular manufacturing area within the site. Use real
names not acronyms.

Contact Name - Name of the qualified person performing the test.

Overall Result (1-10) - severity of failure as documented

Overall Result Comments - any comments regarding overall failures.

3.3.2 Subheader

List each component and combined component active in the test.

Item - identifier to link failures to components

Vendor - Name of the manufacturer or vendor of the hardware/software
component.

Model - Model name that is used in the inventory process.

Version - Name/Number of the version of the hardware/software
component.

3.3.3 Failures Observed

List only tests which exhibit a failure during system testing:

Item - item number of component which failed

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
48

Section - Document section of test, which fails.

Test Name - name of test, which fails.

Result - Enter P (Pass), F (Fail) or N/A (for not applicable)

Pass if the expected results are observed.

Fail if abnormal results occur. N/A if the test is Not Applicable.

If the test fails, complete the comment field for that test to document the
issues according to the instructions below.

Result Comments - If result was Pass or N/A then comments are not
obligatory, but if the result was fail then the comments are obligatory to
describe the failure.

Effect - Code to describe the effect of failure. If the Result was Pass then
input either D (for Date) or N (for No date) in the Effect field depending
on whether a date function is found.

If the result was Fail then input I (Inconvenient), S (Severe) or C
(Catastrophic) in the Effect field. If the result was Not Applicable, do not
enter anything.

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
49

Year 2000 System Test Report Form

Site
Contact
Name Date Location Area System Name

Result
Result

Comments Manpower Time

Item Vendor Model Version Item Vendor Model Version
1 26
2 27
3 28
4 29
5 30
6 31
7 32
8 33
9 34
10 35
11 36
12 37
13 38
14 39
15 40
16 41
17 42
18 43
19 44
20 45
21 46
22 47
23 48
24 49
25 50

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
50

Item Section Test Name Results Effect Result Comments

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
51

APPENDIX E

Department of Agriculture
Office of the Chief Information Officer

Year 2000 Program Office

CERTIFICATE OF YEAR 2000 COMPLIANCE

DEFINITION OF YEAR 2000 COMPLIANCE

Year 2000 means, with respect to Information Technology, that the Information Technology
accurately processes date/time data (including, but not limited to, calculating, comparing, and
sequencing) from, into, and between the twentieth and twenty-first centuries, and the years 1999
and 2000 and leap year calculations, to the extent that other information technology, used in
combination with the information being acquired, properly exchanges date/time data with it.
-----FEDERAL ACQUISITION REGULATION 39.002

This certifies to the Office of the Chief Information Officer that the referenced systems has been
assessed and is Year 2000 date compliant. For purposes of this certification, Year 2000
compliance includes information technology, or telecommunication, or vulnerable systems and
processes (building’s and facilities, or scientific and laboratory equipment.)

SYSTEM NAME:

AGENCY:

EXECUTIVE SPONSOR:

DATE

Year 2000 Testing Procedures Guide

July 2, 1998 USDA-98-001
52

APPENDIX F

OCIO Contracts for Advisory and Assistance Services Memorandum

